
Understanding Insertion Sorting

Insertion Sorting can be best understood if you pretend that you are playing a card game. If

you pick up the cards you are dealt one at a time and order them in your hand one at a time …

you are doing the exact Insertion Sorting process. When looking at data set (array of integers in

this case), simply treat it as though you are picking up cards and organizing your cards one at a

time. Here’s an example …

 Array

The 7 card is picked up and placed into my hand … it doesn’t matter what the first card is, it

does not need to be sorted. Technically, I don’t need to do anything with the first card.

1
st

 “Pass” - The 2 card is picked up and compared with the 7.

 A swap needs to be made, a swap is done.

 End of 1
st

 Pass �

2
nd

 “Pass” - The 5 card is compared with the 7. The 5 is

 smaller, so another test is made with the 2.

 The 5 is placed in its proper position.

 End of 2
nd

 Pass �

3
rd

 “Pass” - The 9 card is compared with the 7. No swap is

 needed so the process is stopped!

 End of 3
rd

 Pass �

4
th

 “Pass” - The 4 card is compared with the 9, which leads

 to a comparison with the 7 … and then the 5 …

 and then the 2. The home is finally found for

 the 4 and it is placed in its proper position.

 End of 3
rd

 Pass �

Congratulations, we’ve sorted our “hand”!

7 2 5 9 4

7 2 5 9 4

2 7 5 9 4

2 7 5 9 4

2 5 7 9 4

2 5 7 9 4

2 5 7 9 4

2 5 7 9 4

2 4 5 7 9

Read and understand the following Insertion Sorting method (envision picking up cards):

public static void sort(int theArray[]) //method called sort can be called

{

 int numberToPlace; //tempStorage for “card” we draw

 int n; //the “card in hand” we look at

 boolean keepGoing; //should we keep looking?

 for(int i=1 ; i<theArray.length ; i++) //i=1 since 1
st

 card we pick, known

 { //as theArray[0], needs no “order”

 numberToPlace = theArray[i]; // “pick up a card” – next card really

 n = i – 1; // n=index before the card you drew

 keepGoing = true; // Make sure we keep going

 while(keepGoing && (n >= 0)) // if we get to 1
st

 card, don’t loop

 {

 if(numberToPlace < theArray[n]) //Card picked < last card in hand???

 { // If yes …

 theArray[n+1] = theArray[n]; //Make room-move last card in hand

 n--; //Move left a card in your hand

 if(n == -1) //If there isn’t a card to the left,

 theArray[0] = numberToPlace; //Make your new card the first card

 } //While loop continues, check n--

 else // If no …

 {

 keepGoing = false; // stop looping, don’t check anymore

 theArray[n+1] = numberToPlace; // put new card at the end

 }

 }

 }

}

Practice Insertion Sorting: What would each pass (stage) of insertion sorting do to (like pg 1):

 Original Array: 4 7 5 3 9 1 6

 Pass #1: ___ ___ ___ ___ ___ ___ ___

 Pass #2: ___ ___ ___ ___ ___ ___ ___

 Pass #3: ___ ___ ___ ___ ___ ___ ___

Pass #4: ___ ___ ___ ___ ___ ___ ___

Pass #5: ___ ___ ___ ___ ___ ___ ___

Pass #6: ___ ___ ___ ___ ___ ___ ___

